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1. Introduction

The Local Projections (LP) approach to understanding the dynamic effects of exogenous
shocks, originated in Jordà (2005), has become a common and alternative tool to the
traditional Vector Autoregression (VAR) approach. In light of the theoretical result
in Plagborg-Møller and Wolf (2021), i.e. VARs and LPs estimating the same impulse
responses in population, one may think that using either VAR or LP should not matter.
However, the finite sample properties of these two estimators differ. In particular, when
p lags of the data are included in the VAR and as controls in the LP, IRFs approximately
agree out to horizon p, but at longer horizons h > p there is a bias-variance trade-off
(Li, Plagborg-Møller, and Wolf 2023).

This paper explores the implications of using one of these two econometric models
for summarizing key features of the data, such as the dynamic response to exogenous
shocks, in order to estimate the structural parameters of a DSGE model. Given their
different small sample properties, targeting impulse responses (IRFs) estimated by LP
or VAR will lead to different structural parameter estimates. Hence, in practice, using
LP- or VAR-IRFs for DSGE estimation may lead to different outcomes and potentially
different quantitative predictions from the structural model.

I carry out a Monte Carlo analysis to investigate the consequences of targeting LP vs.
VAR estimated responses in a minimum distance estimation. I consider two estimators
within this class: impulse response matching and indirect inference, and use the Smets
and Wouters’ (2007) model as the Data Generating Process (DGP). Further, and as a
benchmark, I assume that the econometrician observes the true shock, which guar-
antees correct identification. Nevertheless, estimated responses will vary depending
on the econometric model used for estimation as well as on the sample size and the
number of lags. In general, targeting LP responses which have a lower bias than VARs
is a great idea if resorting to IRF matching. On the other hand, when estimating the
structural parameters via Ind. Inf., using the VAR as the auxiliary model outperforms
LPs because Ind. Inf. is robust to misspecification and VARs have a lower variance.

These results are better understood in conjunction with the choice of p, the lag
length. Note that LP responses are independent of the lag length when the shock is
observed, while VAR responses become more similar to LP’s as the lag length increases.
Actually, the reduction of the bias in VAR responses as p increases comes also at the
cost of a larger variance (Olea, Plagborg-Møller, Qian, andWolf 2024). Consequently,
when p is large, there are little differences between targeting LP- or VAR-IRFs. On the
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other hand, when p is small, the LP approach is significantly better than VARs for IRF
matching due to its smaller bias, while using a small p VAR as the auxiliary model for
Ind. Inf. is the superior choice due to its smaller variance.

The sample size used to estimate these responses also has an impact on the structural
parameter estimation. The larger the small sample bias, the worse the estimation
outcome. However, such deterioration in the performance of the estimation is more
important for IRF matching than for Ind. Inf. to the point that the latter is preferred
regardless of the econometric model used to estimate IRFs. Moreover, I also show that
using the bias corrected version of LPs and VARs improves the estimation outcome in
an IRF matching exercise, while it is not so relevant for Ind. Inf. applications.

On a second set of Monte Carlo simulations I relax the observed shock assumption
and consider a scenario in which the econometrician does not observe the shock at
all and has to infer it from recursive assumptions. Here I show that if assumptions are
correct, e.g. by assuming that TFP does not affect other endogenous variables at time 0
as it is the case in the Smets and Wouters’ model, the results from the observed shock
scenario still hold. On the other hand, when these recursive assumptions are incorrect,
e.g. if I assume that the policy rate has no contemporaneous impact on real variables,
a common assumption for monetary policy shocks that doesn’t hold in the Smets and
Wouters’ model, then IRF matching estimates are significantly worse relative to the
observed shock identification due to the larger bias in IRFs, while Ind. Inf. estimates are
surprisingly better than the observed shock case because of the lower variance in IRFs,
specially at shorter horizons.

In the last set of Monte Carlo simulations I consider an intermediate scenario in
which the econometrician observes a proxy for the shock that is contaminated with
measurement error, which can or cannot be correlated with other shocks. In either
case, the estimation performance worsens for both (auxiliary) econometric models (LP
& VAR) and estimation approaches (IRF matching & Ind. Inf.). However, an improvement
can be attained if applying the unit effect normalization of Stock and Watson (2018),
which corrects for the bias in the estimated IRFs, and consequently, improves the
structural estimation outcome for both approaches, but specially for IRF matching.

Overall, these findings provide a novel perspective on DSGE estimation setups that
target estimated impulse responses and shed light on how the bias-variance trade off
between LPs and VARs translate to the structural parameters of the economic model.
The main lesson is that Ind. Inf. is robust to misspecification, which is more common
among VARs, and benefits frommore tightly estimated IRFs. The opposite is true for
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the IRF matching approach. Thus, researchers should rely more often on Ind. Inf. to
estimate their DSGE models as it is robust to potential misspecification coming from
invalid identification assumptions, small sample bias or incorrect lag selection.

Related Literature. The Monte Carlo study in this paper is inspired by the seminal work
of Smith (1993) on the use of VARmodels as the binding function in an indirect inference
exercise that estimates the structural parameters of a DSGE model. Unlike Smith (1993),
who uses all the coefficients in the VAR, I only select those coefficients that identify the
impulse responses to a given shock. Hence, my paper is also related to the literature that
relies on IRF matching for DSGE estimation (Rotemberg and Woodford 1997). In fact,
throughout the paper, I compare the performance of these two estimators, Ind. Inf. and
IRFmatching, when targeting responses to various shocks under different IRF estimation
methods and identification strategies. Consequently, my paper belongs to the broader
literature that studies the small sample properties of minimum distance, simulation
based, partial information estimators. Examples include: (i) Jordà and Kozicki (2011)
who propose an estimator in which the economic model restrictions are based on
its impulse response representation; (ii) Creel and Kristensen (2011) who propose an
Indirect Likelihood Estimator as an alternative to Simulated Method of Moments or
Indirect Inference; (iii) Scalone (2018) who advocates for the use of Bayesian Method of
Moments for the estimation of non-linear economic models; or (iv) Ruge-Murcia (2007,
2012, 2020) who studies the small sample properties of minimum distance estimators
in linear and non-linear environments as well as with linear and non-linear binding
functions for the indirect inference applications. Unlike these papers, my Monte Carlo
study aims to analyze the small sample properties of the two most common minimum
distance estimators used in macroeconomic applications, IRF matching and Ind. Inf.,
under various identification assumptions for the estimated responses that act as targets.
Moreover, I consider LPs, in addition to VARs, as the auxiliary econometric model
adopted for estimation.

Givenmy interest in the performance of LP andVARs as the source of (data)moments
or as the auxiliary model for indirect inference, my paper is also related to the literature
that studies the performance of these two methods in the context of IRF estimation.
Plagborg-Møller and Wolf (2021) have proven that these econometric models estimate
the same IRFs in population and that LPs can impose the same amount of identification
restrictions used in SVARs after appropriately choosing the set of controls. However, the
small sample properties of these two estimators differ. In fact, there is a bias-variance
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trade-off beyond horizon p as shown in Li, Plagborg-Møller, and Wolf (2023). My paper
complements their results as it confirms the bias-variance trade-off under a different
DGP, but more importantly, investigates its implications for the purposes of uncovering
structural DSGE parameters.

Overview. The rest of the paper is organized as follows. Section 2 describes and justifies
the choice of the DSGE model used to generate the data. Section 3 describes the esti-
mation methodology, the auxiliary models employed to estimate IRFs, and the various
identification strategies within the context of the DSGE model used as DGP. Section 4
outlines the Monte-Carlo design and discusses the metrics used to evaluate the results,
which are then presented in Section 5. Finally, Section 6 concludes.

2. The Data Generating Process

This section describes the model used to generate the data for the Monte Carlo study
in which I compare the impulse response function matching (IRF matching) and the
indirect inference (Ind. Inf.) estimation strategies as a way to infer the structural pa-
rameters of a DSGE model. Many models could have fulfilled this purpose, nonetheless,
I have chosen the Smets and Wouters (2007) model for several reasons. First, it is a
well-understood and widely used model in academia as well as in policy circles. Second,
the vast majority of existing applications that estimate their model economies bymatch-
ing impulse responses concern linearized models, see for example Rotemberg and
Woodford (1997), Christiano, Eichenbaum, and Evans (2005), Iacoviello (2005), or Jordà
and Kozicki (2011). It is true, however, that the theoretical foundations of indirect infer-
ence were grounded on the estimation of nonlinear models (Gourieroux, Monfort, and
Renault 1993). I acknowledge this limitation associated to the chosen DGP, nonetheless,
how to choose between LPs and VARswithin these two estimation set-ups is still an open
question in linearized, and hence, simpler settings. 1 And third, themodel is sufficiently
rich to allow us to explore different types of shocks and identification strategies. As
discussed in Ramey (2016), monetary, fiscal and technology shocks are the most widely
studied in empirical applications and hence responses to these shocks are potentially
also being used as data moments/targets for structural estimation. Importantly, the
Smets and Wouters model is able to generate reasonable responses to all these three
shocks.

1 Ruge-Murcia (2020) studies the performance of non-linear auxiliary models in non-linear settings,
but he only focuses on local projections and indirect inference estimation.
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2.1. The Smets andWouters Model

The model is based on Christiano, Eichenbaum, and Evans (2005) who added various
frictions to a basic New Keynesian DSGE in order to capture the dynamic response to a
monetary policy shock as measured by a structural vector autoregression (SVAR). When
price and wage stickiness are paired with adjustment costs for investment, capacity
utilization costs, habit formation in consumption, partial indexation of prices and
wages as well as autocorrelated disturbance terms, the model is able to generate a rich
autocorrelation structure. These elements are key for capturing the joint dynamics of
output, consumption, investment, hours worked, wages, inflation and the interest rate
in the Euro Area (Smets and Wouters 2003). The 2007 version of the model, which I use
in this paper, is a minor modification of the 2003 Smets and Wouters model in order
to fit the US data. Given the importance of the Smets and Wouters model in the DSGE
literature, I do not describe their economy in this paper. Nonetheless, the log linearized
equilibrium conditions are reproduced in Appendix A.

3. EstimationMethods

3.1. Indirect Inference

Any economic model, including the Smets and Wouters model, can be represented as a
function,M(·), that for a given vector of parameters Θmaps a sequence of endogenous
states { yt–1}, exogenous variables {xt} and shocks {εt}, into a sequence of endogenous
variables { yt}. That is,

yt =M( yt–1, xt, εt;Θ)(1)

for t = 1, . . . ,T. Therefore, using this mapping it is possible to generate infinite data
sequences { yt}Tt=1, given an initial value of the endogenous state y0 and a sequence
of the shocks {εt}Tt=1. Model simulation is in fact the basis for the class of minimum
distance estimators that seek to find an ex-ante unknown parameter vector that mini-
mizes the distance between data and simulated moments. The most common among
this class are the Simulated Method of Moments (SMM) and the Indirect Inference (Ind.
Inf.) estimators. The only difference between these two is that SMM uses unconditional
moments, while in an Ind. Inf. exercise these come from an auxiliary, typically econo-
metric, model. The auxiliary model that summarizes the key features of the data into a
tractable vector of parameters is often referred to as the binding function.
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The Ind. Inf. approach was popularized in macroeconomics by Smith (1993) who
used a VAR to summarize the key features from the data that he wanted to replicate with
his economic model. Formally, the Ind. Inf. estimates arise from solving the following
minimization problem

Jsmm = min
Θ

(β – β(Θ))′W (β – β(Θ))(2)

whereβ andβ(Θ) are the estimated coefficients of an auxiliary (econometric)model and
W is a weighting matrix. In this paper, these estimated coefficients are those identifying
the dynamic response to an aggregate shock. As shown in Sections 3.3 and 3.4, there
are various approaches to identify and estimate IRFs. Consequently, the main objective
of this paper is to study how the choice of these particular binding functions β(·) affect
the structural parameter estimates Θ̂.

3.2. Impulse Response FunctionMatching

An alternative to Ind. Inf., that is used frequently in DSGE estimation, is impulse re-
sponse function matching (IRF matching). It is also a minimum distance estimator as
it minimizes the distance between data targets (estimated IRFs) and its model coun-
terparts (structural IRFs). In fact, this approach is more similar to calibration than
it is to estimation. Nonetheless, it provides a natural benchmark to compare the Ind.
Inf. estimation results as bias-variance trade-offs, small sample biases or incorrect
identification strategies associated to the estimated dynamic responses will only affect
the data moments/targets. Hence, it is more likely that the properties of the estimated
responses are inherited by the structural parameters when using this approach.

Formally, the IRF matching estimates are obtained after solving the following mini-
mization problem

Jir f = min
Θ

(β – IRF(Θ))′W (β – IRF(Θ))(3)

where the only difference with respect to Ind. Inf. is on how IRFs are computed when
the candidate vector of parametersΘ is updated in search of a minimum. Notice that in
(3), the model counterpart, IRF(·), is the structural IRFs and hence they do not require
a simulated dataset because they are directly computed from the ABCD representation
of the model (Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson 2007).
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3.3. The (Auxiliary) Econometric Models

Assume that I observe data wt = (r′t, x̃t, ỹt, q′t) where x̃t and ỹt are scalar time series and
r′t and q′t are nr × 1 and nq × 1 vectors of time series including contemporaneous and
lagged controls, respectively. I am interested in the dynamic response of ỹt after an
impulse in x̃t as a way of summarizing some features of the data that I would like to
replicate with my structural macroeconomic model. The most common approaches to
estimate these impulse responses in the data involve the use of VAR or LP. The choice
between these two econometric models is important because, despite estimating the
same responses in population (Plagborg-Møller and Wolf 2021), their small sample
performance is characterized by a bias-variance trade off (Li, Plagborg-Møller, and
Wolf 2023). Hence, I am interested in how these small sample properties may affect the
structural parameters when VARs or LPs are used to summarize the data in a minimum
distance estimation.

3.3.1. VAR approaches

Least Squares VAR. I consider a recursive VAR specification in wt

wt = c +
p
∑
ℓ=1

Aℓwt–ℓ + ut(4)

where ut is the projection residual and (c, {Aℓ}
p
ℓ=1) are the projection coefficients. These

coefficients are estimated by least-squares and the residual covariance matrix, Σ̂u =
T–1 ∑

T
t=2 ûtû

′
t, is factorized using a lower triangular Cholesky factor B̂, such that B̂B̂′ = Σ̂u.

Define the lag polynomial∑
p
ℓ=0 CℓL

ℓ = C(L) ≡ A(L)–1. Noting that x̃t and ỹt are the (nr +1)-
th and the (nr +2)-th elements inwt, I can now define the VAR impulse response function
of ỹt with respect to an impulse in x̃t as {Λh}h≥0 where

Λh ≡ Cnr+2,•,hB•,nr+1(5)

and B•,nr+1 is the (nr + 1)-th column of B and Cnr+2,• refers to the (nr + 2)-th row of Ch.

Bias corrected VAR. The impulse responses are estimated as above, but I use the modi-
fication proposed by Kilian (1998) that applies the formula in Pope (1990) to analytically
correct the bias of the reduced-form coefficients caused by persistent data.
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3.3.2. Local projection approaches

Least Squares LP. The least-squares local projection estimator βh is obtained from the
OLS regression

ỹt+h = µh + βhx̃t + γ
′
hrt +

p
∑
ℓ=1
δ′h,ℓwt–ℓ + ξh,t(6)

where ỹt+h is the response variable, x̃t is the impulse variable, and rt are contempora-
neous controls, {wt–ℓ}

p
ℓ=1 controls for p lags of all data series included in the regression,

and ξh,t is the projection residual.

Bias Corrected LP. I use the version proposed by Herbst and Johannsen (2023) where
they partially remove the bias associated to high persistence in the data. This bias,
although asymptotically negligible relative to the standard deviation, can be sizable in
small samples.

3.3.3. Lag length selection

A key element to understand the differences in the estimated IRFs when using Local
Projections or SVARs is the lag length, p. Recall one of the Plagborg-Møller and Wolf’s
(2021) results: Local Projections with p lags as controls and VAR( p) estimators approximately
agree at impulse response horizons h ≤ p. Consequently, using longer lag lengths given a
fixed horizon H will certainly deliver more similar targeted responses across the two
econometric models. As a result, the estimated economic parameters should also be
more similar when comparing across VARs and LPs as the source of moments/targets.
To test this hypothesis, we will consider estimation setups with various lag lengths
for the (auxiliary) econometric models, i.e. I let p ∈ {2, 4, 8, 12}. Alternatively, I could
have opted for using information criteria such as AIC or BIC, however, these tend to
select very short lag lengths which are not consistent with the typical choices in applied
work. In fact, Li, Plagborg-Møller, and Wolf (2023) use the following lag length rule,
p = max{ p̂AIC, 4}, which for my DGP will have always resulted in picking p = 4.

3.4. Impulse Response Estimands & Identification

I follow Li, Plagborg-Møller, and Wolf (2023) in considering three types of structural
impulse response estimands to mimic as closely as possible the schemes used in ap-
plied macroeconometrics to identify impulse responses in the data. Recall that these
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responses are simply a way of summarizing the data for our structural estimation, and
not the main focus of our analysis.

3.4.1. Observed innovation / observed shock identification

I assume that the econometrician observes the endogenous variables w̄t and the true
structural shock εt or equivalently its innovation ηt. For the VAR approaches, I order the
shock as the first variable in the VAR systemwith r′t being empty. Equivalently for the LP
approaches, the impulse variable x̃t is the shock (or the innovation) itself. Consequently,
no controls are needed in the OLS regression (6) to mope out any measurement error
or serial correlation in the shocks, as typically done in many empirical applications
(Ramey 2016, Stock and Watson 2018). As a result, the observed data vector w̄ includes
the shock itself as well as themacroeconomic variables of interest for both econometric
models. The latter include: (i) output, (ii) consumption, (iii) investment and (iv) hours
worked.

I estimate the dynamic response of each of these variables to one of the three most
common aggregate shocks: (i) monetary, (ii) fiscal and (iii) technology shocks. For
monetary and technology shocks using the innovation ηt or the shock εt will lead
to identical estimated responses, however, this is not the case for the fiscal policy
shock. Recall that in the Smets and Wouters model government spending is completely
exogenous but it is affected by the technology shock as follows:

ε
g
t = ρgε

g
t–1 + ρgaη

a
t + η

g
t(7)

where ρga captures the contemporaneous correlation between the two shocks. As a
result, if ρga ̸= 0, using the shock εgt without controlling for TFP will lead to incorrect
responses. To circumvent this issue I will initially use the innovation rather than the
shock itself as our impulse variable for all the shocks, i.e. x̃t = ηit for i ∈ {m, g, a}.
Nonetheless, I will still explore the differences between using the innovation or the
correlated fiscal policy shock as explained in Section 3.4.3.

3.4.2. Recursive identification

On the other extreme, I assume that the econometrician only observes the endogenous
variables with no direct measure of the shock. Consistent with the large literature in
recursive shock identification in VARs (e.g. see Christiano, Eichenbaum, and Evans,
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1999), the shock of interest is the orthogonalized innovation to a policy variable it
included in the vector of endogenous variables w̄t.

There are two common identification assumptions to impose recursive zero restric-
tions on contemporaneous coefficients (Ramey 2016). First, the policy variable does not
respond within the period to other endogenous variables. For example, Blanchard and Per-
otti (2002) impose this constraint in the context of government spending shocks. And
second, other endogenous variables do not respond to the policy variable within the period.
Bernanke and Blinder (1992) were the first to identify monetary policy shocks in this
way, but they have been followed by others like Christiano, Eichenbaum, and Evans
(2005).

Consistent with this literature, we follow the second approach for monetary shocks
and order the policy rate last as this restricts other variables in the VAR to not respond
contemporaneously to the monetary innovations. Among the other macro variables in
the VAR we include: (i) output, (ii) consumption, (iii) investment, (iv) hours worked, (v)
wages, and (vi) inflation. On the other hand, we follow the first approach for the fiscal
and technology shocks and use government expenditures or productivity as the first
series in the VAR, respectively. For both shocks, we include: (i) output, (ii) consumption,
(iii) investment, and (iv) hours worked as the other variables in the VAR.

Interestingly, in the context of the Smets andWoutersmodel these recursive assump-
tions will only be correct in the case of technology shocks as TFP is purely exogenous.
Government expenditures, despite being exogenous, are correlated with the produc-
tivity shock while real variables and prices respond contemporaneously to monetary
innovations despite price andwage rigidities as shown in Figure 6 of Smets andWouters’
(2007) paper. These invalid identification assumptions for fiscal and monetary policy
shocks make our estimation exercises more interesting as it will allow us to test to what
extend Ind. Inf. is robust to this type ofmisspecification, i.e. one in which the recursively
orthogonalized innovations do not equal the structural shocks in the Smets andWouters
model.

Turning to the LP responses, we know that any SVAR identification scheme can
be also implemented using LP methods (Plagborg-Møller and Wolf 2021). In fact, for
the identification strategy used for the technology and fiscal policy shocks, this only
requires to set the impulse variable x̃t to the policy variable it; while for the monetary
policy identification scheme, we also need to control for the contemporaneous variables
that are ordered before the policy variable in the VAR system.
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3.4.3. Noisy direct measures of the shocks of interest

In between these two extremes, there is a growing and very popular strand of the litera-
ture that relies on external information to construct a direct measure of the shock of
interest. These directly measured shocks often capture only part of shock or are mea-
sured with error (Stock and Watson 2018). For example, Romer and Romer (2004) use
narrative methods to construct a monetary policy shock in which Greenbook forecasts
are used to separate the Fed’s superior information from the exogenous shock. Nonethe-
less, they still use additional recursive assumptions when studying the responses of
output and prices as they do not view their shock as pure (Ramey 2016). 2 Consequently,
I consider a third identification strategy in which the observed innovation / shock is
contaminated with measurement error. In particular, I assume that the econometrician
observes a proxy for the innovation of the shock:

ηobst = ηt + σννt(8)

where νt is an iid innovation with zero mean and a standard deviation of one. The IRF
estimation approach is identical to the observed innovation case in Section 3.4.1 but
replacing ηt by equation (8) and assuming that σν = 0.5.

In addition to the classical measurement error scenario, I also consider the possibil-
ity that the measured shock is correlated with other shocks, which would violate the
exogeneity condition. Recall that this is the case for the government spending shock
within the Smets and Wouters (2007) model – see equation (7). Hence, I compare the
estimation results from targeting responses to fiscal policy which have been estimated
using information about the innovation ηgt versus those that rely on the actual correlated
shock εgt . Again, the estimation procedure is identical to the observed shock case, but
with a different information set.

Finally, I consider the case in which the IRFs have been normalized using the unit
effect of Stock and Watson (2018) as they show that fixing the shock units via normaliza-
tion allows to capture the dynamic causal effect even in the presence of measurement
error.

2 Other examples of this approach include the fiscal policy shock measure in Ramey (2011) which
uses Business Week’s articles.
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4. Design, Implementation & Evaluation

This section describes how I set up the Monte Carlo study to analyze the small sample
properties of the IRF matching and the Ind. Inf. estimators that use VARs or LPs as the
source of data moments or as the binding function, respectively. The analysis is based
on the economic model described in Section 2 under the hypothesis that the DGP and
the estimated model are the same. 3 That is, the log linearized version of the Smets and
Wouters (2007)model is used to generate time series ofmacroeconomic variables as well
as time series for the innovation of the shocks. These series are then used to estimate
impulse response functions using the econometric models described in Section 3.3
and under the different identification schemes explained in Section 3.4. Finally, these
estimated responses, which summarize the dynamics of the model/data, are used as
moments/targets in estimation to pin down the structural parameters.

The Smets and Wouters (2007) model has 36 structural parameters but to reduce the
computational burden I focus on 8 of these: the intertemporal elasticity of substitution
{σc}, the consumption habit parameter {hc}, the elasticity of labor supply {σl }, the
investment adjustment cost parameter {φ}, and the non-adjustment probabilities and
indexation parameters for wages {ξw, ιw} and prices {ξ p, ι p}. The “true” values of these
structural parameters are listed in Table 1, while the remaining ones are set and fixed
at the mean estimated values by Smets and Wouters (2007) – see Table 1A & 1B in their
paper.

Using these parameter values, the “true”model is simulated S = 100 times for T = 300
periods. 4 This artificial dataset is used to estimate the dynamic response of four macro
aggregates: output, consumption, investment and hours worked to either monetary,
fiscal or technology shocks over H = 20 quarters. Hence, for each Monte Carlo draw
and each estimation setup we target 84 = 21 × 4 moments. Note that the Monte Carlo
distribution of these targets/datamoments is identical for both IRFmatching and Ind. Inf.
exercises – it represents β in problems (2) and (3). Recall that for Ind. Inf. approach the
estimated IRFs are also computed based on the model simulated data at each candidate
parameter vector, β(Θ). In that case, the sample size is inflated by a factor τ = 10. In
theory, we know that the asymptotic distribution of the estimates depends on this
choice as simulation uncertainty decreases when the length of the simulated series
to the sample size increases. However, in practice, having very long simulated series

3 We do not consider the alternative that the model is misspecified because this has been already
studied by Ruge-Murcia (2007) in the context of the simulated method of moments.

4 A sufficiently long burning sample is used to get rid of the initial conditions.
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TABLE 1. True values of structural parameters

Parameter Value Interpretation

σc 1.38 Intertemporal elasticity of substitution
hc 0.71 Habit parameter
σl 1.83 Elasticity of labor supply
φ 5.74 Investment adjustment cost parameter
ξw 0.70 Probability of non-adjustment (wages)
ξ p 0.66 Probability of non-adjustment (prices)
ιw 0.58 Wage indexation parameter
ι p 0.24 Price indexation parameter

NOTE. This table depicts the true value of the estimated parameters from the Smets and Wouters model.
Their values coincide with the mean estimates from their 2007 paper.

increases the computational cost and is not needed to obtain accurate estimates. Ruge-
Murcia (2012) shows how this choice affects the parameter estimates in the context of
DSGE models estimated by SMM. Consequently, I do not explore this dimension and
simply set this hyper-parameter to a common value used in practice. Nonetheless, I
consider the case in which the data moments/targets are estimated on a sample with
just T = 100 periods to study the small sample bias in LPs documented in Herbst and
Johannsen (2023). For simplicity, this robustness test is performed only on the context
of the observed innovation scheme.

Finally, I use the identity matrix as the weighting matrixW = I since it is one of the
most widely used in empirical work. Nevertheless, I also consider: (i) the inverse of the
variance-covariance matrix of the data moments (VCM) as it is the optimal weighting
matrix, and (ii) a diagonal matrix whose entries are the inverse of the IRFs horizon 1/h.
The latter tries to address the possible identification problem arising from the little and
noisy information contained in impulse responses at long horizons (Canova and Sala
2009).

4.1. PerformanceMetrics

To evaluate the performance of a given estimator Θ̂ of Θ, we consider different metrics
that can be classified into two groups: (i) overall performancemetrics that speak about the
structural estimation as a whole and consequently inform us about how the estimated
model fits the DGP, and (ii) parameter-by-parameter metrics that look at each estimated
parameter individually. Most of the literature focus only on the latter and assesses
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the performance of the estimation based on the bias and standard deviation of each
estimated parameter and even sometimes on the sum of the two squared: the Root
Mean Squared Error (Smith 1993, Ruge-Murcia 2007, 2012, 2020, Scalone 2018). Equally
important is the overall fit, and hence, I stress the importance of these metrics in the
discussion of our results as they sometimes draw a different picture.

4.1.1. Overall performance

The most natural metric that speaks about the overall performance of the estimation is
the value of the objective function that one is trying to minimize, that is Jsmm and Jir f in
equations (2) and (3). These are often refer to as the J-statistic. A recurrent problemwith
this statistic is that it depends on the units of the weighting matrixW . Consequently,
when reporting the value of the J-statistic for the different estimation setups we will fix
the weighting matrix to the identity independently of which weights have been used
during the optimization stage.

The J-statistic is frequently used in practice because it is easy to compute, however,
it only gives an approximate sense of how well the estimated model is able to capture
the dynamic responses to various shocks. Given that we control the DGP, one can do
better by looking at the distance between the structural IRFs at the true parameter
vector Θ∗ and at the estimated one Θ̂ as shown below

J∗ =
(
IRF(Θ∗) – IRF(Θ̂)

)′ (
IRF(Θ∗) – IRF(Θ̂)

)
(9)

Equation (9) can be computed for the targeted responses, but also for untargeted
ones, e.g. output response to a technology shock when targeting monetary policy re-
sponses.

4.1.2. Parameter-by-parameter performance

The literature on DSGE estimation has looked at bias and standard deviations of the
estimated parameters when evaluating different methods for obvious reasons. I also
look at thesemetrics but with a small twistmotivated by the loss function in Li, Plagborg-
Møller, and Wolf (2023). Given the bias-variance trade off in estimated IRFs, and also,
the heterogenous researcher’s preferences about biases and noise in their parameter
estimates, I consider a linear combination of bias and variance with different bias
weights as shown below
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Lω(Θ̂i,Θ
∗
i ) = ω ×

(
E
[
Θ̂i

]
–Θ∗

i

)2︸ ︷︷ ︸
bias

+ (1 –ω) × Var(Θ̂i)︸ ︷︷ ︸
variance

(10)

Note that for ω = 1, the researcher is only concerned about bias. For ω ∈ (0.5, 1)
the researcher is more concerned about (squared) bias than variance, while for equal
weightsω = 0.5, this metric is proportional to the mean squared error (MSE).

Then, when comparing two different approaches, for example one that uses VARs
and other that uses LPs, I will compute the difference between the two loss functions
for different bias weights and as a fraction of the true structural parameter value to
make deviations comparable across parameters. That is, my preferred measure of
parameter-by-parameter performance has the following form

zi ≡

(
Lω(Θ̂VARi ,Θ∗

i ) – Lω(Θ̂
LP
i ,Θ∗

i )
)

Θi
(11)

where Θ̂VARi and Θ̂LPi denote the parameters estimated when using VAR or LP as the
(auxiliary) econometric model, respectively.

5. Results

5.1. The Best Case Scenario: Observed Innovations as Benchmark

I start by discussing the Monte-Carlo results under the assumption that the econo-
metrician observes the true innovation. This is a situation that would never occur in
practice, however, it is a good benchmark to initially test the properties of the Ind. Inf.
and IRF matching estimators. The targeted estimated responses under such assumption
are depicted in Appendix B.1, where I show that there is a bias-variance trade off be-
tween LPs and SVARs in the context of the Smets and Wouters model. But, what are the
implications of this trade off for the estimated structural parameters?

Table 2 shows the overall performance metrics for the two estimation strategies and
econometric models while averaging across the three sources of variation and the four
lag lengths considered. The sample size is set to T = 300 observations. Focusing only
on the top block that relies on the identity as the weighting matrix for now, one sees
that using LP responses as targets in an IRF matching exercise is a better idea (lower J∗)
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TABLE 2. Overall performance using the observed innovation

IRFmatching Indirect Inference

Jir f J∗ Time J∗unt Jsmm J∗ Time J∗unt

Identity Matrix

Local Projection 35.10 0.27 3.49 min 18.70 32.54 0.39 42.88 min 17.91
Structural VAR 35.23 0.41 3.93 min 17.93 33.87 0.33 14.47 min 18.39

Diagonal Matrix

Local Projection 34.44 0.22 3.61 min 18.87 32.82 0.35 40.56 min 18.22
Structural VAR 34.87 0.27 3.85 min 18.20 34.17 0.31 11.55 min 18.62

Optimal Weighting Matrix

Local Projection 33.63 0.04 3.07 min 21.56 32.69 0.06 35.56 min 21.41
Structural VAR 34.17 0.05 3.20 min 20.80 34.26 0.08 10.69 min 20.90

NOTE. This table shows the overall performancemetrics and the average computing time for IRFmatching
and Ind. Inf. exercises that use either the identity, the diagonal or the optimal weighting matrix.

because their smaller bias. However, this is no longer true in an Ind. Inf. exercise where
the SVAR approach is slightly better given that SVAR responses have lower variance
and their larger bias is irrelevant for the Ind. Inf. approach as it is robust to this type of
misspecification.

In terms of parameter by parameter performance, what seems to drive these differ-
ences between targeting the LP versus the SVAR estimated responses in an IRF matching
exercise is the lower bias obtained for the inter-temporal and intra-temporal elasticities
of substitution {σ̂c, σ̂l }, as shown in panel A of Figure 1 by the darker red color atω ≈ 1.
On the other hand, the better overall performance of the SVAR approach in the Ind.
Inf. exercise is driven by the lower variance of the intra-temporal elasticity, the habit
parameter, the investment adjustment cost and specially the Calvo (1983) probability
of wage adjustment {σ̂c, ĥc, φ̂, ξ̂w} , as shown by the blue bars in panel B of Figure 1.
More generally, it is interesting to observe that for most estimated parameters the LP
approach tends to do better when the researcher gives a lot weight to the bias, while
the SVAR approach is more desirable under low bias weights.

Lag Length. Understanding these previous results requires to dig deeper into what
drives the differences in the estimated IRFs. The lag length is a natural choice as the
trade off between LPs and VARs depends on it. As shown in Figure A7 in Appendix C,
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A. IRF matching B. Indirect Inference

FIGURE 1. Parameter-by-parameter performance

NOTE. This figure show our preferred measure of parameter-by-parameter performance, equation (11),
for both IRF matching and Ind. Inf. estimation approaches under the identity weighting matrix. Here,
for each parameter consider in the estimation, a red color indicates that the LP outperforms the SVAR
approach, while the blue color highlights the opposite situation: SVAR better than LP.

LP responses are independent of the lag length and SVAR responses approximately
agree with them up to horizon p. It is only beyond horizon h > p where they disagree
substantially. In fact, as discussed in Li, Plagborg-Møller, and Wolf (2023), it is the more
restrictive way in which SVAR extrapolate long run responses from the first p sample
auto-covariances that yields the lower variance at a higher bias. Nonetheless, when
increasing the lag length the confidence intervals of the SVAR responses increase and
become more alike to those of the LP, which is consistent with the latest “no free lunch”
result in Olea et al. (2024). So again, what are the implications of these results on LP
and SVAR estimates for the structural parameters when LP/SVAR estimated responses
are used as the source of moments in a partial information DSGE estimation?

Table A1 breaks down the overall performance of the IRF matching and Ind. Inf. ap-
proaches by the choice of the lag length. A couple interesting observations arise. First,
for the IRF matching the J∗ from the SVAR gets closer and closer to the LP counterpart as
the lag length increases. This is mostly driven by the REDUCTION of J∗ associated to the
lower bias of the SVAR responses at long horizons. In fact, median and confidence inter-
vals of the targeted IRFs are almost identical when p = 12, and consequently, estimated
parameters and J∗ are very similar too. And second, for the Ind. Inf. exercise, which
recall is robust to misspecification, the gap in J∗ is also decreasing but because that J∗
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in the SVAR approach INCREASES as the confidence intervals of the SVAR responses get
wider. Overall, it seems that the DSGE modeler will be better off by matching tightly
estimated responses, independently of their bias, while using an Ind. Inf. approach.
However, this comes at higher computational cost as it requires model simulation and
IRF estimation at each iteration. Consequently, for some models IRF matching may be
more suitable and therefore targeting a well estimated response with low bias becomes
crucial.

Sample Size. The presence of small sample bias can become an issue for IRF matching
for obvious reasons, but it can also affect Ind. Inf. as long as it also affects the variance
of the responses. Consequently, the choice of the sample size used to generate the
data moments / targets is another relevant dimension to understand the differences
between the estimation approaches studied in this paper. Hence, I repeat the Monte
Carlo estimations using a smaller sample of T = 100 observations since this is the typical
sample length encounter in most macroeconomic applications (Herbst and Johannsen
2023). As shown in Figure A8, small sample bias in LP responses is also present in
the baseline sample with T = 300 observations, however, it becomes larger when I
reduce the sample size. 5 Hence, I consider two avenues: (i) I investigate whether Ind.
Inf. improves upon IRF matching when the small sample bias is more severe in the LP
approach, and (ii) I study whether correcting for bias in the data moments / targets
using bias correction terms improves the overall performance of the estimation.

Table A2 addresses these two questions. First, by comparing the LP approach under
the two sample sizes one sees that Ind. Inf. improves upon IRF matching when the
small sample bias becomes very large at T = 100. Nonetheless, the performance of the
estimation under both approaches is worse as the variance of the targets / datamoments
increases, which can be seen by comparing Figures A1 and A9. The bias in the SVAR is
not related to the sample size, but smaller samples also increase the variance. As result,
the overall performance when using SVAR responses with T = 100 is also worse than
when T = 300 observations are employed. And second, when I repeat the estimation
using the bias corrected versions of the LP and SVAR, discussed in Section 3.3, one can
see that correcting for small sample bias is very effective when estimating the model
via IRF matching. In fact, the J∗ is around 1.5 times smaller when bias correction terms
are employed to generate the targets. Finally, bias correction in the auxiliary models is
not as relevant for Ind. Inf. estimation.

5 Recall that Plagborg-Møller andWolf’s (2021) result about LP( p) exactly agreeing with the structural
responses is a population result, i.e. for very large T. Panel C & D in Figure A8 illustrate this point.
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Weighting Matrices. All the previous discussions were based on the identity matrix
which is a common choice in practice given its simplicity. However, I also explore the
choice of two alternative weighting matrices. First, a diagonal matrix that has 1/h as its
diagonal elements and hence gives a lower weight to the responses at longer horizons.
And second, the optimal weighing matrix, which is known to be the inverse of the VCM
of the moments.

To understand how this particular choice affects the overall performance of the
estimation, start by looking at the second block of Table 2, which shows the J∗ under
the diagonal matrix. It is not surprising that the differences in J∗’s between using LPs
or SVARs shrinks (relative to the identity matrix). Recall that at short horizons SVARs
and LP responses approximately agree and consequently putting more weight on these
coefficients imply more similar outcomes for the estimation. In fact, this is particularly
strong for the SVAR targets in the IRF matching approach as it discounts the importance
of matching the biased long-run responses. Another interesting observation is that J∗’s
are generally lower for both estimation approaches and econometric models. Turning
now to the last block of Table 2, which shows the overall performance metrics when
the optimal weighting matrix is used, J∗’s are significantly smaller and remarkably
close to 0, which is the best possible outcome. Moreover, the use of these more efficient
weighting matrices reduces the computational time, with the optimal weighting matrix
being the best option among the three.

The parameter by parameter performance under each of these three alternative
weighting matrices can be seen in Appendix C.3. The main takeaway is that the mean
estimates improve substantially when a more efficient weighting matrix is used. Sur-
prisingly, the improvement in terms of standard deviations is not as large as initially
expected.

5.2. The Good Old-Fashioned Days: Recursive Identification

I now turn to discuss the estimation set ups that assume that the econometrician does
not observe the shock, but it is able to recover it using restrictions based on economic
theory. The most widely used approach is to impose zero restrictions on contempora-
neous coefficients. As discussed in Section 3.4.2, I will identify technology and fiscal
policy shocks by assuming that the policy variable, TFP or government spending, does
not respond within the period to other exogenous variables. Importantly, this assump-
tion will not hold for the fiscal policy shock in the Smets and Wouters model because
government spending is contemporaneously correlated with the technology shock.
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Hence, I will postpone that discussion to Section 5.3 where I address the problem of
identifying shocks subject to measurement error and its implications for the structural
parameters. The results from targeting technology shocks can be found below in Section
5.2.1. Regarding the monetary policy shock, I instead assume that the policy variable,
the interest rate, does not affect other endogenous variables within the period. This
assumption does not hold in the Smets and Wouters model either and so I explore what
are the consequences of targeting responses to misspecified VAR/LP models in Section
5.2.2 below.

5.2.1. Technology shock

The responses to a technology shock recursively identifiedwithin the Smets andWouters
(2007) model are identical to those obtained by assuming that the econometrician ob-
serves the innovation/shock. Obviously, the recursive assumption is correct and hence
one can recover the true shock via a Cholesky decomposition. Hence, the estimation
results using the minimum distance approach will be identical under the two assump-
tions. The first block of Table 3 shows the overall performance metrics where one sees
that the main lessons from Section 5.1 still apply when focusing only on technology
shocks. Another interesting observation concerns how the model captures the dynamic

A. IRF matching B. Indirect Inference

FIGURE 2. Breakdown of Figure 1 by targeted shock – Technology

NOTE. This figure show our preferred measure of parameter-by-parameter performance, equation (11),
for both IRF matching and Ind. Inf. estimation approaches under the identity weighting matrix. Here,
for each parameter consider in the estimation, a red color indicates that the LP outperforms the SVAR
approach, while the blue color highlights the opposite situation: SVAR better than LP.
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response to other shocks, which is measured by J∗unt. Its relatively large values across
estimation approaches and econometric models indicate that targeting the response
to technology shocks is not a great idea as the estimated model will miss the dynamic
responses to fiscal andmonetary policy at the optimal parameter vector. Further, Figure
2 shows how LP and SVAR compare when individually focusing on each estimated
parameter. Such comparison is informative about the contribution of each estimated
parameter to the overall outcome. Actually, one can confirm by looking at panel A that
the superior performance from targeting LP-IRFs in the IRF matching estimation comes
from a more accurate estimation of the investment adjustment cost parameter {φ̂}.
Similarly, the SVAR approach to Ind. Inf. is also better than the LP approach because
it does a better job in pinning down φ. Notice that even though the SVAR approach
to Ind. Inf. is also better at identifying other parameters, such as the intra-temporal
elasticity of substitution {σ̂c}, these are not so relevant for shaping the responses to
technology innovations. In fact, σc is better identified when targeting the SVAR-IRFs in
a IRF matching exercise despite its overall performance is worse than when targeting
LP-IRFs.

TABLE 3. Decomposition by the targeted shock

IRFmatching Indirect Inference

Jir f J∗ Time J∗unt Jsmm J∗ Time J∗unt

Technology shocks

Local Projection 1.05 0.67 2.87 min 37.30 0.70 0.84 42.41 min 35.92
Structural VAR 2.53 1.07 3.11 min 35.74 0.97 0.66 14.34 min 37.31

Observed monetary policy shock

Local Projection 50.65 0.07 3.46 min 9.36 48.46 0.31 41.39 min 9.40
Structural VAR 54.07 0.11 4.38 min 9.26 53.60 0.30 14.65 min 9.44

Recursive monetary policy shock

Local Projection 48.11 0.29 3.34 min 9.60 56.91 0.18 78.57 min 9.34
Structural VAR 47.09 0.34 3.78 min 9.31 58.70 0.12 11.44 min 9.34

NOTE. This table shows the overall performance metrics for IRF matching and Ind. Inf. when estimated
responses to technology shocks (top block), observed monetary policy shocks (middle block) or recursive
monetary policy shocks (bottom block) are being targeted. In all set-ups we are averaging the results
across different lag lengths.
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5.2.2. Monetary policy shock

In the Smets andWouters model a negative monetary policy shock has a positive impact
in real activity at time t = 0 as shown by the dashed lines in Figure A1 or A3. On the
other hand, ordering the policy rate last in the VAR and recovering the responses
through a Cholesky decomposition implicitly assumes that monetary policy does not
have a contemporaneous impact on other endogenous variables. Consequently, all the
estimated responses, either via LP or SVAR, start at 0 when the monetary policy shock
has been identified in this way. Obviously, this assumption is at odds with the model.
Thus, differently from the technology shock, I now investigate what are the implications
for the structural parameters of targeting these misspecified responses.

Themiddle and bottomblocks of Table 3 show the overall performancemetricswhen
targeting responses to the observed or the recursively identified shocks, respectively.
Focusing first on the observed shock, one sees that in line with the previous results,
targeting LP-IRFs is a better approach when relying on IRF matching, while using a
SVAR is better than LP as a binding function for Ind. Inf., even though only by a small
margin in this case. Additionally, and differently from the technology shock, targeting
the responses to monetary policy shocks are a good idea in the context of the Smets
and Wouters model as one would also be able to capture the dynamics of technology
and fiscal policy fairly well, as shown by the lower J∗unt (relative to the results obtained
by targeting the technology shock).

Turning now to the estimation set-ups that targets the misspecified responses to the
recursive monetary policy shock, one can see that when IRF matching is the estimation
approach, overall performance gets worse as the larger bias of estimated responses
relative to the true structural IRFs gets reflected into the estimated structural parameters,
independently of the econometricmodel employed. On the other hand, Ind. Inf. is robust
to misspecification and in fact improves upon the observed shock case: J∗ is lower in
the bottom block than in the middle block. This may seem surprising initially, but
it is explained by the lower variance of the responses to recursive shocks. Imposing
a zero contemporaneous response reduces the bands of the estimated IRFs that are
used as data moments, and hence, structural parameters are more tightly estimated.
Further, within the recursive shock, the LP approach outperforms the SVAR approach
in a IRF matching exercise while the opposite is true in the Ind. Inf. approach. But what
parameters are responsible for these overall estimation outcomes?

Figure 3 compares the difference in parameter-by-parameter losses for various bias
weights as shown in equation (11) when a estimated responses to a recursive monetary
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A. IRF matching B. Indirect Inference

FIGURE 3. Parameter-by-Parameter Performance - Recursive Monetary Policy Shock

NOTE. This figure shows our preferred measure of parameter-by-parameter performance, equation (11),
for both IRF matching and Ind. Inf. estimation approaches that target responses to a recursive monetary
policy shock under the identity weighting matrix.

policy shock are used as targets / data moments. Starting by panel A in which the IRF
matching is considered, one sees that againφ plays an important role and is responsible
for explaining the better performance of the LP approach. Note that the intra-temporal
elasticity of substitution σl is also better pinned down by the LP in the Ind. Inf. approach
but still LP underperforms. In fact, as shown in panel B, almost all the other structural
parameters are better estimated with the SVAR as the auxiliary model, independently
of the bias weight.

5.3. Direct Proxies for the Shocks: Measurement Error & Unit Effect Normalization

Finally, I present the results of the Monte Carlo analysis that assumes that the econome-
trician does not observe the true shock but a proxy for it. I distinguish three cases: (i) the
proxy is contaminated with a white noise error and the econometrician is not aware of
it, (ii) the proxy is contaminated with a term that is correlated with other shocks in the
system / model and the econometrician also does not correct for it in any way or form,
(iii) the proxy is contaminated with white noise error but the responses are normalized
such that the error cancels out by means of the Stock and Watson (2018) unit effect
normalization. The targeted moments used in the structural parameter estimation
under each of these variants are depicted in Appendix B.3.
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5.3.1. Classical measurement error in the innovation

Figure A4 shows that the presence of measurement error in the innovation leads to
attenuation bias. It arises from the variance term in the denominator of the least squares
estimator and hence it is common to both econometric models, LPs and VARs. Since
neither of these two IRF estimators are robust to the presence of measurement error,
then using LP or SVAR estimated responses during the structural estimation stage won’t
affect the results in any different way than in the observed shock case. Nonetheless, the
bias associated to the presence of measurement error will still worsen the structural
estimation outcome for both IRF matching and Ind. Inf. estimators. Because targeted
responses are now biased towards zero, then those parameters that dampen the IRFs are
selected as optimal. Note that the econometrician is not aware of themeasurement error
and hence uses the true innovation in the model for updating the model counterpart of
the IRFs for each parameter vector considered. As a result, the simulated / structural
IRFs at each candidate vector do not suffer from attenuation bias. Then, a potential
solution that may improve the estimation outcome will be to estimate the variance of
the white noise error that contaminates the innovation. As a result, the attenuation
bias in the model moments can be introduced through this parameter rather than by
driving the structural parameters away from their true values. This extension is left for
future work.

TABLE 4. Shock proxies and classical measurement error

IRFmatching Indirect Inference

Jir f J∗ Time J∗unt Jsmm J∗ Time J∗unt

A technology shock proxy (ηa,obst )

Local Projection 1.79 1.25 3.05 min 34.30 1.35 1.40 40.23 min 33.31
Structural VAR 3.41 1.70 2.80 min 33.47 1.70 1.18 13.74 min 34.39

A monetary policy proxy (ηm,obst )

Local Projection 46.81 0.33 3.46 min 9.73 45.99 0.61 40.57 min 9.70
Structural VAR 48.07 0.35 3.72 min 9.43 49.42 0.71 12.51 min 9.77

A fiscal policy proxy (ηg,obst )

Local Projection 48.05 0.05 4.23 min 8.21 42.52 0.19 45.60 min 7.47
Structural VAR 44.04 0.19 4.07 min 7.80 41.41 0.14 13.73 min 7.62

NOTE. This table shows the overall performance metrics for IRF matching and Ind. Inf. when the shock
used to estimate IRFs has been contaminated with classical measurement error.
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The top block of Table 4 shows that the overall performance metrics of the struc-
tural estimation that targets estimated responses to a technology shock that features
uncorrelated measurement error and confirms the above intuition. As shown by the J∗,
the estimation outcome is significantly worse for both LPs and VARs as well as for the
IRF matching and Ind. Inf. estimators relative to the observed shock case. Nevertheless,
the lessons from the observed shock case still apply. That is, targeting LP-IRFs is a good
idea when resorting to IRF matching given their low bias, while using VARs for Ind. Inf.
is a better choice given their lower variance.

These findings also apply to other sources of variation such as monetary or fiscal
policy shocks in which the innovation is also observed with classical measurement
error. These results are shown in the middle and bottom block of Table 4. One can see
there how the J∗ is significantly larger relative to the observed shock case for both IRF
matching and Ind. Inf. estimators.

5.3.2. Correlated measurement error: government spending and its correlation
with technology

Now I consider the case in which the observed shock is correlated with other shocks.
Recall that in the Smets andWouters model this is the case of government spending.
Differently from the previous scenario here I assume that this correlation is known
during the optimization stage. That is, ρga is neither set to zero nor estimated, but
instead fixed to its true value when updating the model moments during the estimation.

TABLE 5. Correlated shocks & unit normalization

IRFmatching Indirect Inference

Jir f J∗ Time J∗unt Jsmm J∗ Time J∗unt

A correlated fiscal policy proxy (εg,obst )

Local Projection 30.82 0.34 4.09 min 7.80 39.05 0.35 46.13 min 10.15
Structural VAR 31.45 0.34 4.19 min 7.78 42.42 0.40 14.20 min 10.53

A 1% increase in r0 (Stock and Watson (2018) normalization)

Local Projection 50.77 0.08 3.83 min 19.34 49.49 0.52 49.84 min 17.85
Structural VAR 53.41 0.32 4.04 min 18.86 51.23 0.42 12.49 min 17.93

NOTE. This table shows the overall performance metrics for IRF matching and Ind. Inf. when the shock
used to estimate IRFs has been contaminated with measurement error.
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The targeted responses to a government spending shock are shown in Figure A5.6

The estimation results from targeting these responses are shown in the top block of
Table 5. The J∗ is again much larger than in the observed shock case or in the proxy
measure with classical measurement error, and for both estimation approaches. Hence,
as expected, correlated errors are a bigger issue than uncorrelated ones for structural
parameter estimation. Surprisingly, Ind. Inf. is not more robust to this type of biases
than IRF matching. Thus, differently from (misspecified) recursive shocks, there is not
an advantage in using Ind. Inf. over the traditional IRF matching approach when IRFs
are estimated using proxies of the shocks.

5.3.3. Unit normalization: a 1% increase in the policy rate

Stock and Watson (2018) has shown a way of dealing with measurement error in the
proxy variables by estimating relative rather than absolute impulse responses. The
unit effect normalization is shown at work in Figure A6 where I plot the responses
to monetary policy shock estimated with a contaminated proxy but whose responses
have been normalized such that the policy rate increases by 1% upon impact. The
first thing to notice is that the population (dotted line) and the structural (dashed line)
responses coincide at all horizons and for all variables. Nonetheless, there are still some
discrepancies in finite samples as it was the case for the observed shock identification
scheme. But how does this rescaling of the IRFs affect the structural parameters and
the overall performance of the structural estimation?

The bottom block of Table 5 shows that the J∗ is still larger than in the observed
shock case, but the improvement upon the unnormalized responses is substantial. For
example, the J∗ coming from the IRF matching that targets LP-IRFs is 0.07 and 0.08 in the
observed shock and normalized responses, respectively; while it equals 0.33 when using
the responses to the monetary policy shock contaminated with classical measurement
error. As the unit normalization helps in correcting the bias in estimated responses, it
is very effective when employed in an IRF matching exercise. For Ind. Inf. the bias is less
relevant and consequently the unit effect normalization is not as effective. In fact, the
J∗ for the VAR is 0.42 when using the normalization, 0.71 without normalization and 0.30
in the observed shock case. Finally, here the main lesson from the observed shock still
applies and using LP-IRFs is better for IRF matching while SVAR-IRFs are more effective
in Ind. Inf. estimations.

6 These responses are identical to those obtained when ordering government spending first in the
VAR and inferring the shock recursively.
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6. Conclusion

This paper conducts a Monte Carlo analysis to examine the small sample performance
of IRF matching and Ind. Inf. estimators that target IRFs that have been estimated with
LP or VAR models. I drew the following five conclusions:

1. The bias-variance trade off between LP and SVAR estimated IRFs affects the esti-
mated structural parameters obtained with minimum distance estimators such
as Ind. Inf. and IRF matching estimators. Nonetheless, it affects them differently.
IRF matching is more sensitive to bias in targeted responses and hence using
LP-IRFs is preferable, while Ind. Inf. is robust to misspecification and hence
benefits from the lower variance of VAR-IRFs.

2. The number of lags used in the VAR or as controls in the LP is crucial in un-
derstanding not only the differences between estimated IRFs but also in the
estimated structural parameters. When the lag length p is large, then IRFs and
estimated parameters are similar independently of the econometric model used.
On the other hand, when p is small LP-IRFs are less biased and hence better for
IRF matching, while SVAR-IRFs have a larger bias but lower variance which helps
when estimating the parameters via Ind. Inf. as the later is robust to these type of
biases in estimated responses.

3. The small sample bias of LPs, documented by Herbst and Johannsen (2023),
worsens the performance of the structural estimation, specially in the case of IRF
matching. Using their bias correction term for the targeted moments improves
the estimation outcome of the IRF matching estimators, while it is irrelevant for
Ind. Inf. applications.

4. Incorrect recursive identification for the target moments are not an issue for the
estimation of structural parameters as long as Ind. Inf. is employed. However, it
is problematic for IRF matching.

5. The presence of measurement error in the proxies used to estimate IRFs worsens
the structural estimation outcome for both estimation methods and econometric
models. Using the unit effect normalization of Stock and Watson (2018) help
ameliorating this problem.

These findings are applicable to a wide range of estimation set-ups and economic
models as the Smets andWouters (2007) contains many ingredients that are still used in
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many macro models. However, results may vary in the context of a fully non-linear or
state dependent model. Thus, a fruitful line of research will be expanding this analysis
by using a solution method for this or another economic model that allows to capture
non-linear and state-dependent responses. A good starting point is the work of Ruge-
Murcia (2020), which already considers non-linear solution and estimation methods
but falls short in investigating the trade-offs between non-linear LPs and SVARs as well
as different identification schemes for the shocks.
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Appendix A. The Smets-Wouters Model

The log-linearized equilibrium conditions of the Smets and Wouters (2007) model take
the following form:
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– ŵt + εat(A9)

π̂t =
βγ(1–σc)

1 + ι pβγ(1–σc)
Etπ̂t+1 +

ι p

1 + βγ(1–σc)
π̂t–1+

–

(
1 – βγ(1–σc)ξ p

) (
1 – ξ p

)(
1 + ι pβγ(1–σc)

) (
1 + (Φ – 1)ε p

)
ξ p
µ̂
p
t + ε

p
t

(A10)

r̂kt =l̂ t + ŵt – k̂
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And the (seven) exogenous shocks evolve according to:
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Appendix B. Data Moments / Targets

A selection of the impulse responses used as targets or data moments in estimation are
depicted below. These are obtained after simulating the model at the true parameter
vector Θ∗ for each of the S = 100 draws of the shocks under different identification
strategies and using either LPs or SVAR methods for estimation.

B.1. Observed Innovation

B.1.1. The bias-variance trade off

Figure A1 depicts the response of output, consumption, investment and hours worked
to one standard deviation of the monetary policy shock. The dashed line in both panels
is the structural IRF that one aims to estimate using either the LP (panel A) or the SVAR
(panel B) models. These are depicted with a fan chart to capture the distribution over
the different draws of the shock. The median response is plotted with a solid line. In
both cases, the sample size is T = 300 and the lag length is set to p = 4.

From this simple plotting exercise, one learns that themedian LP estimated response
(solid line in panel A) is very similar to the structural IRF,while the themedian estimated

A. Local Projections B. SVARs

FIGURE A1. Responses to an observed monetary innovation

NOTE. This figure shows the distribution of the estimated responses of output, consumption, investment
and hours worked to a monetary innovation that have been estimated using either a LP (panel A) or
SVAR (panel B) approach and p = 4 lags. The solid line is the median response, while the dash line is the
structural IRF.
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SVAR response (solid line in panel B) differs substantially at long horizons. Moreover,
the distribution of the LP responses is wider than that of SVAR responses as the latter
tend to die out at long horizons. In other words, LP has lower bias than SVAR responses,
but it comes at the cost of having also a larger variance than SVARs. This result is
consistent with the findings in Li, Plagborg-Møller, and Wolf (2023) and it also present
in the response to other shocks within the Smets andWoutersmodel, such as technology
or fiscal policy shocks.

B.1.2. Observed innovation vs. observed shock

It is common knowledge that using the innovation or the shock itself gives the same
impulse responses as long as the shocks are independent and identically distributed.
Hence, in the context of the Smets and Wouters (2007) model estimating the responses
to technology andmonetary policy using the shock, i.e. by setting x̃t to εmt or ε

a
t , will give

the same answer as to using the innovation itself, i.e. setting x̃t to ηmt or ηat . Therefore,
the results in Section 5.1 can be also interpreted as if the econometrician were to
observe the shock, but with one caveat. Government spending is correlated with the
technology shock, as shown in equation (A17), and hence the response to the innovation
is not identical to the response of the shock. I will explore the difference between the
innovation and the shock when I study the case in which the econometrician observes
a noisy measure of the shock of interest – see Section 3.4.3 for a discussion and Section
5.3 for the results.

B.2. Recursive Identification

As discussed in Section 3.4.2, there are twowidely used alternatives to identify the shocks
through imposing recursive zero restrictions on contemporaneous coefficients. The
first one assumes that the policy variable does not respond within the period to other
exogenous variables, while the second one imposes that other endogenous variables do
not respond to the policy shock within the period. See Ramey (2016) for details.

B.2.1. Technology shock

The technology shock governs by the evolution of TFP in the Smets and Wouters (2007)
model. The TFP process follows an AR(1) in logs and it is completely exogenous, as
shown in equation (A15). Hence, it is reasonable to assume that the policy variable, TFP,
does not respond to other exogenous variables within the period. In fact, that is the
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A. Local Projections B. SVARs

FIGURE A2. Responses to a recursive technology shock

NOTE. This figure shows the distribution of the estimated responses of output, consumption, investment
and hours worked to a technology shock identified recursively and that has been estimated using either a
LP (panel A) or SVAR (panel B) approach with p = 4 lags. The solid line is the median response, while the
dash line is the structural IRF and the dotted line is the population LP/SVAR response with infinite lags.

correct assumption as illustrated by the fact that the population response (dotted line)
and the structural IRF (dash line) coincide at all horizons. Therefore, the estimated
SVAR-IRFs, which rely on a VAR where I order TFP as the first variable, as well as
the LP-IRFs, that set x̃t = εat , coincide with the estimated IRFs under the observed
innovation assumption. Figure A2 depicts the distribution of the output, consumption,
investment and hours worked estimated responses using the aforementioned recursive
identification strategy with T = 300 and p = 4, and in fact, they are identical to the
distribution of responses estimated under the observed shock assumption.

Finally, note that the bias-variance trade off is also present here as well as the small
sample bias. These issues concern the estimation approach and are independent of the
identification strategy.

B.2.2. Monetary policy shock

For the monetary policy shock I assume instead that other endogenous variables do not
respond to the policy shock within the period as it commonly assumed in the literature,
see for example Bernanke and Blinder (1992) or Christiano, Eichenbaum, and Evans
(2005). Differently from the technology shock, this assumption does not hold within the
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A. Local Projections B. SVARs

FIGURE A3. Responses to a recursive monetary policy shock

NOTE. This figure shows the distribution of the estimated responses of output, consumption, investment
and hours worked to a monetary policy shock identified recursively and that has been estimated using
either a LP (panel A) or SVAR (panel B) approach with p = 4 lags. The solid line is the median response,
while the dash line is the structural IRF and the dotted line is the population LP/SVAR response with
infinite lags.

Smets andWouters (2007) model. This can be seen graphically in Figure A3 in which
the population response (dotted line) disagrees with structural IRF (dash line). In fact,
real variables respond contemporaneously to a monetary policy shock in the Smets
and Wouters (2007) model, which is ruled out by our identification assumption. The
distribution of these estimated responses by either LP or SVAR is also plotted in this
figure and features the usual bias variance trade off with respect to the population
responses.

B.3. Direct measures of the shocks of interest

B.3.1. Uncorrelated external proxies

Figure A4 plots the distribution of estimated responses to a technology shock under
the assumption that the econometrician observes a proxy for the shock and that the
noise in the proxy is uncorrelated with other shocks (classical measurement error).
As shown from the difference between the dash and the dotted lines, the presence of
uncorrelatedmeasurement error lead to attenuationbias. Thepresence ofmeasurement
error increase the variance term in the denominator of the least square estimator and
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A. Local Projections B. SVARs

FIGURE A4. Responses to a mismeasured technology shock

NOTE. This figure shows the distribution of the estimated responses of output, consumption, investment
and hours worked to a technology shock that is subject to classical measurement error and that has been
estimated using either a LP (panel A) or SVAR (panel B) approach with p = 4 lags. The solid line is the
median response, while the dash line is the structural IRF and the dotted line is the population LP/SVAR
response with infinite lags.

consequently biases the population response from the VAR(∞)/LP(∞) towards zero.
This effect is even more pronounced on the estimated IRFs in a finite sample and using
finite lags, as shown by the distribution of LP- and SVAR-IRFs. Importantly, notice that
attenuation bias is a problem regarding identification and hence it is common to both
estimation approaches.

B.3.2. The correlated government spending shock

Figure A5 show the estimated responses to a fiscal policy shock that uses the corre-
lated government shock, rather than the innovation, and without controlling for TFP.
Hence, they can be interpreted as the responses to an identified shock that is subject to
correlated measurement error and hence that breaks the exogeneity assumption. As
result, the structural IRFs (dash lines) and the population responses (dotted lines) do not
agree. Therefore, similarly to the recursive monetary policy shock and the uncorrelated
proxies, the estimated IRFs are also misspecified.

Moreover, these responses coincide with those that one would have obtained by
assuming that government spending is exogenous and therefore does not affect other
endogenous variables contemporaneously. In other words, the recursive identified gov-
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A. Local Projections B. SVARs

FIGURE A5. Responses to a measured fiscal policy shock

NOTE. This figure shows the distribution of the estimated responses of output, consumption, investment
and hours worked to a fiscal policy shock that have been estimated using either a LP (panel A) or SVAR
(panel B) approach and p = 4 lags. The solid line is the median response, while the dash line is the
structural IRF. Note that these responses are identical to the recursive identified fiscal policy shock that
orders government spending first in the VAR.

ernment spending shock leads to the same IRFs as the external proxy that is correlated
with technology. Hence, the estimation results from targeting these estimated responses
are identical.

B.3.3. Unit normalization with uncorrelated external proxies

Figure A6 shows the responses of output, consumption, investment and hours worked
to a 1 percentage point increase in the policy rate. These responses have been obtained
after implementing the unit effect normalization of Stock and Watson (2018). That is,
the size of the shock has been normalized to unity using the initial impact of the shock
on the policy variable, i.e. the policy rate in the case of monetary policy.

As shown by the aforementioned figure, the unit effect normalization helps elim-
inating the attenuation bias incurred in the estimation that uses proxies that have
uncorrelated measurement error. In fact, one sees how the structural IRFs (dashed
lines) and the population responses (dotted lines) agree at all horizons and for all vari-
ables. Note that these responses are identical to those obtained when employing the
true innovation of the shock – see Figure A1 – if they were rescaled by a constant factor
that captures the size of the shock.
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A. Local Projections B. SVARs

FIGURE A6. Unit normalized responses to a measured monetary policy shock

NOTE. This figure shows the distribution of the estimated responses of output, consumption, investment
and hours worked to a 1% increase in the real interest rate that have been estimated using either a LP
(panel A) or SVAR (panel B) approach and p = 4 lags. The solid line is the median response, while the
dash line is the structural IRF.

The estimated responses also present the bias variance trade-offwhich is not affected
by the normalization of the size of the shock.

40



Appendix C. Hyperparameter Choices

C.1. Lag Length

The number of lags used in the VAR or as controls in the LP is a fundamental choice that
may shape the dynamic response to shocks. Hence, given its relevance for the targeted
responses used in a minimum distance estimator, such as the ones consider in this
paper, it is also crucial for understanding the structural estimated parameters and the
performance of the estimation as a whole.

To shed light on this issue, I plotted the response of output to a monetary policy
shock estimated by LP and SVAR models under four different choices of the lag length
p ∈ {2, 4, 8, 12} in Figure A7. It shows that: (i) impulse responses estimated with the
observed innovation and using LPs are independent of the lag length, and consequently,
the median and the confidence intervals are similar across the four panels; (ii) SVAR-
IRFs approximately agree with the LP-IRFs up to horizon h ≤ p as shown in Plagborg-
Møller and Wolf (2021); and (iii) the SVAR confidence intervals converge to those of the

FIGURE A7. Output responses to an observed monetary innovation

NOTE. This figure plots the response of output to a monetary policy shock when it is estimated using
either LPs (red) or SVAR (blue) under different choices of the lag length p ∈ {2, 4, 8.12}. The solid line is
the median response while the dash lines are the 5th and 95th percentiles coming from the different
draws of the shock.
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TABLE A1. Overall performance & lag length

IRFmatching Indirect Inference

Jir f J∗ Time J∗unt Jsmm J∗ Time J∗unt

p = 2

Local Projection 35.75 0.24 3.30 min 18.97 25.47 0.34 18.93 min 18.02
Structural VAR 34.61 0.61 4.32 min 17.00 26.25 0.16 11.88 min 19.32

p = 4

Local Projection 35.68 0.25 3.40 min 18.74 30.26 0.37 28.99 min 17.95
Structural VAR 36.01 0.39 3.89 min 17.75 31.49 0.26 15.35 min 18.26

p = 8

Local Projection 34.69 0.28 3.83 min 18.47 35.91 0.44 45.06 min 17.69
Structural VAR 34.92 0.34 3.85 min 18.36 37.26 0.49 13.35 min 18.01

p = 12

Local Projection 34.27 0.29 3.44 min 18.63 38.52 0.41 78.53 min 17.98
Structural VAR 35.39 0.30 3.67 min 18.61 40.47 0.41 17.29 min 17.98

NOTE. This table breaks down the overall performance of the two econometric models in the two
estimation strategies by the lag length.

LP as suggested by the theoretical results in Olea et al. (2024). In fact, they also show
that increasing the lag length ameliorates the VAR coverage, but at the cost of delivering
intervals as wide as those of LP.

These properties are also present when analyzing the responses to other variables as
well as other shocks. Hence, they are general enough to help us understand the role of
p in the minimum distance estimation that uses IRFs as targets or data moments. Table
A1 breaks down by lag length the metrics presented in Table 2 in the main text, where
recall I was averaging across different sources of variation as well. As mentioned in
Section 5.1, the J∗, the preferred measure of overall performance, is very similar across
both econometric models and in both estimation approaches when the lag length is big
enough p = 12. However, the explanation on why J∗ gets closer between LPs and SVARs
is very different depending on DSGE estimationmethod. For the IRF matching approach,
it is the reduction of the bias in the SVAR-IRFs as p gets large that reduces the value of J∗

and consequently the bias of the estimated parameters; while for the Ind. Inf. approach
is the increase in the variance of the SVAR-IRFs as p gets large that explains the increase
in J∗ until it converges to the level of the J∗ associated with the LP approach. From this
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table, one can also learn that the estimation time is independent of the lag length in
the IRF matching approach because the model counterpart of the targeted IRFs are the
structural responses which are independent of p. However, for the Ind. Inf. approach,
the computation time is increasing in p as it requires to estimate more coefficients
in each iteration of the minimization problem. This issue is even more acute in the
LP approach as its flexibility is associated in part to the larger number of estimated
coefficients. Overall, these results seem to call for estimating DSGE models by Ind. Inf.
and using a VAR with small p as the auxiliary model. Nonetheless, if computational
time turns to be a problem, resorting to IRF matching while targeting LP-IRFs becomes
the second best.

C.2. Sample Size

Herbst and Johannsen (2023) have shown that LP can be severely biased in small samples
and proposed an approach to correct for it. I investigate the consequences of this finding,
as well as their proposed solution, in the context of DSGE estimation that uses estimated
IRFs as targets / data moments in a minimum distance optimization. To shed light on
the issue I plot in Figure A8 the estimated output response to a technology shock using
LP and SVARs as well as their bias corrected counterparts for different sample sizes. In
all scenarios, the simulated sample comes from the Smets and Wouters model at the
true parameter vector and the lag length is set to p = 2. Focusing initially on the Least
Squares LP (solid red line), one sees that the smaller T is, the larger the small sample
bias is, and it is only at very large Ts when the estimated response follows closely the
structural IRF at all horizons. Moreover, the bias correction LP model of Herbst and
Johannsen (2023), depicted by the dashed orange line, partially corrects for the bias
in the estimated responses and are closer to the true structural IRF at all horizons and
all sample sizes, which validates their Monte Carlo results for a different DGP. Moving
into the SVAR-IRFs, one sees that increasing the sample size does not decrease the
higher bias relative to the LP. In fact, the SVAR-IRF is very similar across all samples.
Nonetheless, the bias correction term from Pope (1990) reduces the bias of the response
and brings it closer to the structural IRF.

Small sample uncertainty is not only concerning in terms of bias, but also in terms
of variance. As shown in Figure A9, the fan chart that depict the distribution of output,
consumption, investment and hours worked responses to a monetary policy shock are
wider relative to those in Figure A1, which were estimated on a sample with T = 300
observations. Hence, the lower sample size can potentially impact the outcomes of both
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A. T = 100 B. T = 300

C. T = 500 D. T = 1000

FIGURE A8. Small sample size & bias correction

NOTE. This figure plots the response of output to a technology shock. The black dash line is the structural
IRF at the true parameter vector Θ∗. The other IRFs are estimated using T = 300 observations (panel A)
or T = 100 observations (panel B) by means of Least Squares LP (solid red), Bias Corrected LP (dashed
orange), Least Squares VAR (solid blue) or Bias Corrected VAR (dashed purple). To give context to the role
of sample size, panels C and D also plot these IRFs for T = 500 and T = 1000, respectively.

estimation approaches considered in this paper. Intuitively, the increased bias has a
larger bite in the IRF matching approach, while the increase uncertainty affects the Ind.
Inf.more as this approach is robust to misspecification in the auxiliary econometric
model.

The implications of these results for the overall performance of the estimation are
shown in Table A2. As already discussed in Section 5.1, I distinguish between the role of
sample size when implementing or not the bias correction in the econometric models.
If bias correction is not used, i.e. least squares still being used to estimate LP and VAR
coefficients, then the smaller sample worsens the performance of the estimation for
both auxiliary econometric models. This can be seen by the larger J∗ when comparing
the 3rd and 4th row to the 1st and 2nd row in that table. Interestingly, larger bias of
targeted responses affects differently IRF matching and Ind. Inf. approaches. Recall that
the later is robust to misspecification. Hence, Ind. Inf. outperforms IRF matching when
the small sample bias in LPs is sufficiently large as shown by the smaller J∗ in the 3rd
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A. Local Projections B. SVARs

FIGURE A9. Counterpart of Figure A1 with T = 100 observations

NOTE. This figure is the counterpart of Figure A1 when using T = 100 observations, instead of T = 300, to
estimate the impulse responses to a monetary policy shock.

row. In other words, if the DSGE modeler suspects that her targeted IRFs can suffer
from small sample issues, she will be better off by estimating her model using Ind. Inf.
techniques.

TABLE A2. Overall performance & sample size

IRFmatching Indirect Inference

Jir f J∗ Time J∗unt Jsmm J∗ Time J∗unt

T = 300

Local Projection 35.10 0.27 3.49 min 18.70 32.54 0.39 42.88 min 17.91
Structural VAR 35.23 0.41 3.93 min 17.93 33.87 0.33 14.47 min 18.39

T = 100

Local Projection 29.71 0.53 3.56 min 18.13 22.00 0.46 18.46 min 19.03
Structural VAR 31.62 0.47 3.33 min 17.98 25.16 0.36 9.78 min 19.50
Bias Corrected LP 31.55 0.32 3.26 min 19.18 23.29 0.35 20.48 min 19.50
Bias Corrected SVAR 33.48 0.32 3.42 min 18.65 26.06 0.33 11.02 min 20.11

NOTE. This table show the overall performance of the estimation when using two different sample sizes
to generate the data moments / targets as well as the role of bias correction terms in the estimation of
IRFs and its implications for the estimation outcomes.

45



Regarding the use of bias correction terms such as those proposed by Herbst and
Johannsen (2023), the second block of Table A2 shows that they can be very useful in the
context of IRF matching. In fact, the J∗ is significantly lower when using bias corrected
responses as targets. For Ind. Inf. bias correction seems not to be very relevant as the
overall outcome, specially for VARs, is similar to that obtained without bias correction
terms. This is a puzzling result as bias correction comes at the cost of higher variance,
but this increase in IRF uncertainty doesn’t seem to reflect on the structural parameters.

C.3. Weighting Matrices

The selection of the weighting matrix may have a substantial impact on the estimation
outcome. Differently from the previous hyper-parameter choices, this choice affects
IRF matching and Ind. Inf. in the same way. Therefore, in Table A3 I only report the
mean and standard deviation of the each estimated parameter via the Ind. Inf. approach,
as the same lessons apply to the IRF matching estimates.

First, we have seen that J∗’s decreased as we move away from the identity matrix.
This is reflected in the lower bias in key parameters for capturing the dynamic responses
to the targeted shocks. In fact, the bias of the inter- e intra-temporal elasticities of substi-
tution and the habit parameter {σc,σl , hc} presentwhen using the identitymatrix almost
disappear when using the optimal weighting matrix. In fact, these three parameters
are crucial for capturing the dynamic response to aggregate shocks in the Smets and

TABLE A3. Indirect Inference Estimated Parameters

Parameter Truth Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Identity Matrix Diagonal Matrix Optimal Matrix

σ̂c 1.38 1.24 0.38 1.25 0.38 1.37 0.38
ĥ 0.71 0.77 0.16 0.78 0.12 0.73 0.15
σ̂l 1.83 1.88 0.59 1.89 0.59 1.84 0.57
φ̂ 5.74 5.44 1.82 5.43 1.78 5.11 1.77
ξ̂w 0.70 0.62 0.20 0.62 0.20 0.62 0.19
ξ̂ p 0.66 0.66 0.20 0.65 0.19 0.64 0.20
ι̂w 0.58 0.55 0.19 0.56 0.19 0.57 0.19
ι̂ p 0.24 0.23 0.08 0.23 0.08 0.23 0.08

NOTE. This table depicts the true value of the estimated parameters from the Smets and Wouters model.
It also displays the mean and standard deviation of each parameter under the three analyzed weighting
matrices. The values of the mean and standard deviation are the average and the maximum across the
different sources of variation and lag lengths considered, respectively.
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Wouters model. And second, it seems that the standard deviations of these parameters
are not affected by the choice of the weighting matrix. The optimal weighting matrix
slightly improves the efficiency of the estimation but not as much as initially expected.
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